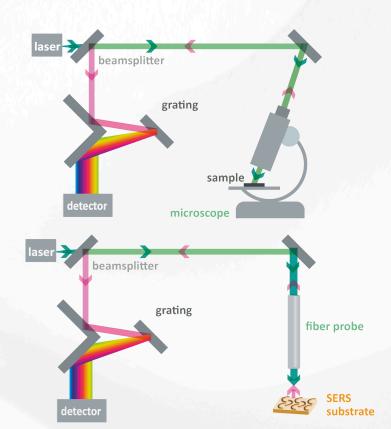
SURFACE-ENHANCED RAMAN SPECTROSCOPY (SERS)

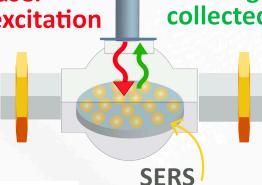

WHAT IS RAMAN SPECTROSCOPY?

enhanced excitation enhanced excitation analyte Raman scattering enhanced Raman signal enhanced near-field

- Raman scattering occurs when light interacts with molecules, causing a shift in wavelength.
- This shift called the Raman shift reveals vibrational modes unique to each molecule.
- A laser excites the sample, and the scattered light is analyzed to determine chemical composition and molecular structure nondestructively.

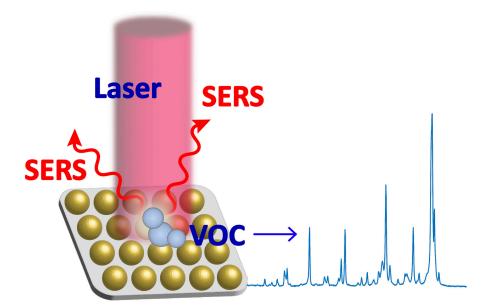
WHAT MAKES SERS DIFFERENT?

- Surface-Enhanced Raman Spectroscopy (SERS) amplifies the Raman signal using nanostructured metal surfaces (typically silver or gold).
 - Laser light excites localized surface plasmons around the nanostructured metal surface, generating intense electromagnetic fields.
 - These fields dramatically boost Raman scattering, enhancing signal strength.
- SERS produces a highly sensitive molecular fingerprint, even at trace concentrations.
- Enables precise identification in complex mixtures, making SERS invaluable for environmental monitoring.


DETECTING VOCS WITH SERS

- Volatile organic compounds (VOCs) are small, airborne molecules that are often difficult to detect due to their low metal affinity.
- SERS detection of VOCs requires **functionalizing** nanostructured metal surfaces with specialized coatings.
- These coatings are designed to retain VOCs, attract and increasing their interaction with the metal surface and excited localized plasmon resonance.

Portable Raman spectrometer



substrate

Purpest

- emit pathogen-specific **VOCs** when under attack.
- Detection of VOCs allows for early diagnosis before visual symptoms appear.
- catchina infections early, growers can prevent yield loss, minimize crop damage, and promote sustainable farming practices
- SERS could enable rapid, on-site detection of harmful pathogens and pests in crops and other plants.

VOC SENSORS & THE PURPEST PROJECT

In the PurPest project, we are developing novel nanostructured SERS sensors with advanced coatings to enable highly sensitive and non-destructive detection of plant pathogens and pests by amplifying disease specific volatile emissions.

The innovation of the PurPest Sensor System Prototype (SSP) supports real time field diagnostics, contributing to sustainable and precise plant protection.

